If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7j^2+8j-2=0
a = 7; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·7·(-2)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{30}}{2*7}=\frac{-8-2\sqrt{30}}{14} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{30}}{2*7}=\frac{-8+2\sqrt{30}}{14} $
| (x+2)/12=6 | | U+160=32(2y+5) | | 7h^2-9=0 | | -1/x+2=7/5x+10+1 | | 4x^2-16×+8=-1(3×-1)*(x+1) | | F(x)=7x^2-5 | | 3m-(m+7)=m+14 | | x^2-9x-8=-11x | | 3x2−20=652 | | (2x-5)=5x-28 | | 8b+2=3 | | 8b+1=5 | | 8x+5=11+3x | | 6x+9x-21=84-6x | | 3t+4=25–2t | | x^2+24x-172=0 | | x+(3x+2(2))=107 | | 24y+36=y | | 2+(x+2)=3x-13 | | k/17=13 | | x+4/2=6-x-1/5 | | 2x+(x+6)=175 | | x+4/2=6-(x-1/5) | | 5(n-2)=35n= | | 5x-(2x-4)=119 | | 9x/12+4=x-8 | | (2x+3)+x=72 | | x^2+33x+34=15x-11 | | x+2/8=1-x+5/8 | | (x+1)+(x+2)+(x+3)+4=70 | | 5m+7=6m+11 | | 2x+2(3x-75)=370 |